
XPath evaluation using XML

schemas rather than XML

documents themselves

Matthew J. Riggott

Master of Science

School of Informatics

University of Edinburgh

2003

Abstract

XPath, the XML path language, consists of expressions denoting paths that locate ele-

ments or attributes in an XML document tree. As an example, the expression/a//b/c

picks out anyc attribute of ab element at any depth under ana document root ele-

ment. But what if the document is constrained by its document type—a DTD or an

XML schema—sob elements don’t havec attributes? Or ifa elements don’t haveb

descendents, at any depth? Then evaluation is pointless.

Taking this into consideration, this thesis sets out to evaluate XPath expressions

against XML schemas, not against the documents they describe, to determine whether

in principle they could be satisfied.

i

Acknowledgements

I would like to thank Dr. Henry Thompson for his help and supervision throughout this

project; thanks also to Dr. Wenfei Fan of Bell Laboratories for making some sugges-

tions on useful reading matter. On a personal level, this project would not have been

possible without the unconditional support from my mother, my father, and Sarah—

words cannot express my gratitude. And of course, many thanks to Suzie for proof-

reading what to her must have been an inordinately dull thesis.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Matthew J. Riggott)

iii

Contents

1 Introduction 1

1.1 XML and its companion recommendations. 3

1.2 Evaluating against document types. 6

1.3 Project overview . 6

2 Literature review 8

3 Materials and methods 11

3.1 Finite-state automata. 11

3.1.1 Non-determinism. 13

3.2 XML schemas and automata. 14

3.3 Parsing XPath expressions. 16

3.3.1 Abbreviated syntax of location paths. 19

3.4 Location paths as automata input sentences. 20

3.4.1 Left-to-right parsing . 21

3.4.2 Right-to-left parsing. 21

3.4.3 Advantages and disadvantages of left-to-right parsing. 22

3.4.4 A note on the Earley algorithm. 23

3.5 Navigating the document tree. 23

4 Implementation 25

4.1 Collecting unknown data. 25

4.2 Obtaining the finite-state automata. 27

4.2.1 Using multiple automata. 28

iv

4.2.2 Handling non-element nodes. 29

4.3 Handling XPath expressions. 29

4.4 Evaluation. 31

4.4.1 Finding the context node. 31

4.4.2 Location steps, axes, and primitives. 33

4.5 Removing the problem of recursion. 37

4.6 Simple types. 38

5 Analysis 40

5.1 Command-line interface. 40

5.2 Testing the program. 41

5.2.1 Self axis . 41

5.2.2 Child axis . 42

5.2.3 Descendantaxis . 42

5.2.4 Descendant-or-selfaxis . 43

5.2.5 Following-siblingaxis . 43

5.2.6 Attributes and predicates. 44

5.3 Bugs in the implementation. 46

5.4 Future work. 48

5.4.1 A new technique. 49

6 Summary 51

A XPath Backus-Naur form grammar 54

B Implementation of the two primitives firstchild and nextsibling 59

C The program from the command-line 61

C.1 Successful evaluation. 61

C.2 Unsuccessful evaluation. 61

D XML Schema used in testing 62

Bibliography 70

v

List of Figures

1.1 A simple XML document. 2

1.2 An XML document represented as a tree of nodes.. 4

3.1 A finite-state automaton for a sheep language.. 12

3.2 A non-deterministic finite-state automaton.. 13

3.3 Extract from an XML schema.. 15

3.4 Automaton corresponding to the schema extract in figure3.3. 16

3.5 An example of recursive definitions in XML Schema.. 22

4.1 XML schema fragment showing the use of namespace prefixes.. . . . 26

4.2 Two connected automata.. 28

4.3 Simple algorithm to unabbreviate location paths.. 30

4.4 XML schema fragment defining an elementmanufacturer. 34

4.5 Finite-state automaton corresponding to the definition in figure4.4. . . 34

4.6 Uncommented code for thegetChildrenfunction. 36

4.7 Left-recursion problem when creating a document tree.. 37

4.8 Examples of trees that could match the node set returned by the loca-

tion pathchild::foo/descendant-or-self::foo. 39

5.1 An ordered cyclic graph representing an XML schema.. 50

vi

List of Tables

3.1 Axes defined by XPath.. 18

3.2 XPath’s abbreviated syntax.. 20

3.3 XPath axes in terms of two primitives and their inverses.. 24

5.1 Results from evaluating theself axis. 42

5.2 Results from evaluating thechild axis. 42

5.3 Results from evaluating thedescendantaxis. 43

5.4 Results from evaluating thedescendant-or-selfaxis. 43

5.5 Results from evaluating thefollowing-siblingaxis.. 44

5.6 Steps to the successful evaluation of a location path with predicates.. 45

5.7 Steps to the unsuccessful evaluation of a location path with predicates.45

vii

Chapter 1

Introduction

XPath [11] is a language for addressing parts of an XML document, designed to be

used by other languages for such a purpose and so provide a common syntax for doc-

ument addressing. XML (Extensible Markup Language) [7] is a markup language that

is used to create other markup languages, instances of which are stored as documents.

XML came about after a concerted effort by the World Wide Web Consortium (com-

monly known as the W3C, the Web’s governing body) to design a flexible language

for use over the Internet. It is a sub-set of the enormous Standardized General Markup

Language (SGML) [17], which as its name implies is a general markup language with

huge capabilities. However the sheer complexity of SGML means it can be hard to

learn and document processing requires much effort. A W3C working group agreed

on a sub-set of SGML that meant processing would be much simpler, documents would

be easy to create and human-readable, whilst still being flexible enough to ‘support a

wide variety of applications’ [7].

Although a markup language such as XML is not a new idea, it has found great

popularity due to well thought-out parts of its design, notably:

• Data exchange: computing has traditionally been hampered by proprietary, in-

compatible data formats, and the Web has been no exception. An XML docu-

ment is stored as human-readable text using the Unicode standard [12], so if all

else fails it can be edited by hand. XML is also an open standard that can be

used freely without being restricted by copyright or patents.

1

Chapter 1. Introduction 2

1 <?xml version="1.0" encoding="utf-8"?>

2 <memorandum id="30df7">

3 <header>

4 <from>John Smith</from>

5 <to>Steve Blois</to>

6 <to>Joe Bloggs</to>

7 <to>Peter O’Neil</to>

8 <subject>Sales figures</subject>

9 </header>

10 <message>

11 Sales figures for August required by noon Friday.

12 </message>

13 </memorandum>

Figure 1.1: A simple XML document.

• Customization: by agreeing on anapplication(a markup language defined in

XML) a group of people or organizations can transfer data in a set format and

create programs to handle that data. Examples include Scalable Vector Graphics

[16] and the mathematical markup language MathML [8].

• Self-describing data: figure 1.1 shows an XML document. The data in the

document is surrounded by XML elements, the names of which are chosen to

describe the data they hold. This allows XML to be self-describing to a point,

and allows (in this case) any English-speaker to understand the meaning and

structure of the document.

Of course the structure of the document in figure1.1is only apparent if one speaks

English, which computers have a tendency not to do. To check whether the structure

and syntax of an XML document is valid, XML allows for document type definitions

(DTDs) to be stored either as part of the document itself, or referenced from a separate

file. Although part of the XML specification, the DTD is a hangover from the days of

SGML, and has a syntax all of its own. Once an XML document is well-formed (i.e.

it complies with the XML syntax), it is also valid if it conforms to a given DTD. The

Chapter 1. Introduction 3

DTD defines what elements and attributes can appear in a document and where they

can appear, along with having some control over what type of data can occur inside

elements and attributes.

However, as XML became more popular and more widely used, DTDs were de-

cried for being too complex; so the W3C set out to create a successor. Early 2001

saw the recommendation∗ of XML Schema [15, 30, 5], and XML-based syntax for

defining XML documents†. Contrary to being simpler than DTDs, XML Schema is a

very powerful specification that allows for much more control over XML documents,

including: specifying data types for elements and attribute content; inheritance from

other schemas; and minimum and maximum occurrences of elements (DTDs rely on

regular expressions; XML Schema allows for limits to be set explicitly). XML Schema

has superseded DTDs and is likely to become more dominant as awareness of it grows.

1.1 XML and its companion recommendations

XML was proverbially in the right place at the right time. It has become thelingua

franca of the Internet and ideas for its use has gone beyond the original intentions.

Attempts are being made to represent databases in it, and XML now sports among

other things query languages (e.g. [13, 6]) and processing languages (e.g. [22]). To aid

this development of XML technology—and also to control it in a benevolent fashion—

the W3C publishes companion recommendations, i.e. standards that complement and

augment XML. Two of these recommendations are XSLT (Extensible Style Language

transformations) [10] and XPointer [29]. These are used to transform XML documents

into XML documents of different types, and for specifying locations inside an XML

document respectively.

Clearly both these languages require a method of addressing parts of an XML doc-

∗The W3C is made up of constituent organizations, and based in three academic institutions across
the world. As such it is not a government agency or a recognized international standards organization.
To indicate this it uses the softer wording of ‘recommendation’ for what is essentially an international
standard.

†Imagine a future where XML etc. has been lost and people come across an XML document which
is described using an XML schema—which is itself an XML document. One can see this as being an
equivalent of the chicken-or-the-egg argument: which came first, XML or XML Schema?

Chapter 1. Introduction 4

memorandum

id header message

30df7 Sales figures for ...

from to to to subject

John Smith Steve Blois Joe Bloggs Peter O’Neil Sales figures

Figure 1.2: An XML document represented as a tree of nodes.

ument. So rather than duplicate the effort the W3C decided on creating a new language

with the primary purpose of providing document addressing functionality, viz. XPath

[11]. Along with its primary purpose XPath also provides basic string, number, and

Boolean manipulation. XPath uses a non-XML syntax so that it can be used within

XML attribute values in documents themselves. The most important construction in

XPath is the expression, an example of which is given below.

/child::document/descendant::paragraph[attribute::type]

This expression looks for thedocumentelement as the root element (the element in-

side which the entire XML document is held), and returns any children or children of

children that have the nameparagraphand contain an attribute namedtype. (A large

number of examples of XPath expressions can be found in the XPath specification

[11]; further discussion of XPath can be found in this thesis in section3.3on page16.)

When evaluated, an expression will result in either a node set (a node being an element,

an attribute, or one of a few other such parts of an XML document), Boolean, string,

or number.

XPath models XML documents as unranked trees of nodes. Such trees are ordered,

finite, and labelled, where nodes can have a arbitrary number of children and so each

label is not associated with a fixed rank. Figure1.2 has such a representation of the

Chapter 1. Introduction 5

document given in figure1.1. In that view inner nodes correspond to elements which

determine the structure of the document while the leaf nodes and the attributes provide

the content. Using thirteen axes (relationships between nodes;child anddescendant

in the expression above are examples of axes), XPath can traverse the tree and locate

certain elements, attributes. To take the expression

child::memorandum/descendant::to

(which finds anyto nodes underneath thememorandumelement in the tree) as an

example and evaluate it against the XML document in figure1.1, XPath would return

the node set [to, to, to], each corresponding to one of the threeto elements in the

document.

In this instance the node set contains three elements, but it also possible that the

node set will be returned empty. Evaluating the expression

child::to/descendant::memorandum

would return an empty node set becausememorandumdoes not appear as a child of

any to element. Similarly, what if the evaluation is looking for elements with certain

attributes, when the elements don’t have any attributes? What if the elements don’t

actually exist in the document?

With hindsight it would be obvious that an evaluation of this sort is pointless. On

documents the size of that in figure1.1 it makes little difference as it is quite sim-

ple. However, complex documents that are time-consuming to process (e.g. very flat

trees with a large number of instances of an element) or very large documents (e.g.

databases) bring to question this blind faith in XPath evaluation. Something as sim-

ple as a spelling mistake would cause unnecessary processing—and if the evaluation

took place over multiple documents this could only add to the problem. Something

is required to evaluate whether the evaluation of the XPath expression is feasible or

necessary before the XML document itself is consulted.

Chapter 1. Introduction 6

1.2 Evaluating against document types

The one place the details of the document are found other than the document itself

is in its type definition, in the form of either a DTD or an XML schema. From the

document type one can find out what elements and attributes are allowed, what their

data content is, where they can appear, and at what frequency. Indeed, by evaluating

the XPath expression against the document type one can perform operations as simple

as a spell-check and as complex as discovering whether the fifthitem child of a list

element that is somewhere below aparagraphelement can have an attribute named

languagewith the contentespañol.

There are obvious advantages to this approach. In an extreme example an eval-

uation against a ten kilobyte schema might show evaluation against a five-hundred

megabyte XML document database to be pointless. The hypothesis of this thesis

then, is that introducing an intermediate step—before an XPath expression is evalu-

ated against an XML document—where the expression is evaluated against the docu-

ment type to prove the feasibility of a full evaluation, would be a sagacious measure.

The objective of this project is to implement such a system to be used to provide this

functionality.

1.3 Project overview

The original aim of this project was to design and implement a complete system for

such abstract evaluation of XPath mentioned above. While a theory was produced

for such a system (see chapter3), XPath proved to be a more complex language than

expected and only a partial implementation of the language was possible given the

time limit of this project. The implementation concentrated on a particular type of

XPath expression, essentially ignoring XPath’s string, number, and Boolean manipu-

lation facilities and instead concentrating on the language’s most important function,

the traversal of XML document trees. The occurrent system implemented six of the

thirteen axes (specifically those that traverse the tree in a downward fashion) as proof

that the system is feasible.

The system does not handle DTDs. A decision to concentrate solely on XML

Chapter 1. Introduction 7

schemas was made for two reasons, viz. that schemas are the more interesting of the

two, but mainly because a DTD’s functionality is a sub-set of XML Schema and it is a

simple matter to transform a DTD into an XML schema∗. Indeed tools exist to do this

(the W3C has a Perl script, DTD2XSD, available from its Web site for example) and it

would be trivial to add functionality to the system to take in a DTD, transform it into a

schema and use it that way.

The system works as a black box. It takes in input, and based on that input re-

turns output representing either a success or a failure of the evaluation. The input is

an XML schema, an XPath expression, the document root element (the upper-most

element in the document tree), along with some optional arguments. From here, the

schema is modelled as a finite-state automaton and the XPath expression is used as an

input language for the automaton. The evaluation is successful if the input language

corresponds to the automaton, otherwise it fails†. This project builds upon an XML

Schema parser and validation tool by Henry Thompson and Richard Tobin of the W3C

and the University of Edinburgh [31]. As this is written in the Python programming

language, the practical work in this project also uses Python.

Thesis outline The following chapter contains a review of related literature. Chapter

3 contains a discussion on the theory, design, and methods behind the implementation.

The system itself and its workings are described in chapter4, while analysis, tests, and

future work follow in chapter5. The main text concludes with a summary in chapter

6, after which come a small number of appendices and the bibliography.

∗It is prudent to note here thatXML Schema(as a proper noun) is used throughout this thesis
to refer to the actual recommendation, whileschemaor schemasrefers to specific instances of the
recommendation.

†Finite-state automata and the theory used in this implementation are discussed in further detail in
section3.1.

Chapter 2

Literature review

To the best of my knowledge there has been no previous work on evaluating XPath

expressions against document types. However, much research has focused separately

on the three main parts of this project: automata theory, XML Schema, and XPath.

This chapter details some of the work related to this thesis, and discusses its relevance.

The finite automaton came about during the middle years of the last century, based

on Turing’s model of algorithmic computation [33]. Turing’s paper is considered by

many to be the foundation of modern computing; in it he defined a machine with finite

control and an input-and-output tape. The machine could, in one move, read a symbol

from the tape, write a different symbol back onto the tape, change state, and move the

position of the tape in either direction.

From this work came McCulloch and Pitts’s model of a neuron [26]. This automa-

ton-like binary device took excitatory and inhibitive input from other neurons and fired

once its activation passed a given threshold. Based on this Kleene [24] defined finite

automata (see section3.1 for a definition) along with regular expressions, and proved

them to be equivalent. From this comes the axiom that any regular language may be

represented as a finite automaton.

The part of XML Schema that constrains the validity of elements and attributes,

the content model, is itself a regular language. In [29], Thompson and Tobin show

that by modifying Aho and Ulman’s algorithm for converting regular expressions to

finite-state automata [1], XML schemas can be represented as finite-state automata

themselves. Thompson and Tobin use this to implement an XML Schema validation

8

Chapter 2. Literature review 9

tool, but it can also be used to evaluate an input languageagainstthe XML Schema,

as will be seen in this thesis.

Recent database research has seen a shift away from traditional relational database

management systems towards XML and semi-structured data, with XML Schema used

for data description. In [3], Arenas et al. show that XML Schema has problems with

the integrity constraints that are integral to database design (i.e. constraint checking

is intractable and NP-hard). This, along with other problems (e.g. a lack of required

restriction, mentioned in [29]), has seen an updated version of XML Schema drafted

that will eventually supersede the current standard.

XPath has also seen much research interest since its publication by the W3C. [27]

sees Neven introduce tree-automata theory for use with XML, and shows how to use

such automata to parse and accept XPath expressions. XPath is a complex language,

and some have realized that in many cases, a full XPath parser is not necessary. In [4],

Benedikt et al. discuss several fragments of XPath (for instance only implementing ei-

ther downward or upward axes), and concentrate on simplifying and optimizing XPath

expressions.

On papers that discuss practical implementations rather than theory, there are a

number of techniques for processing XPath expressions. In [18] and more compactly

in [19], Gottlob et al. introduce algorithms for evaluating XPath expressions using top-

down and bottom-up parsing techniques. Interestingly they note that the XPath axes

(with the exception ofattributeandnamespace) can be defined using using two prim-

itives, firstchild andnextsibling, and their inverses. Altinel and Franklin [2] describe

XFilter, a system for evaluating large numbers of XPath expressions using what is es-

sentially a highly-optimized non-deterministic finite-state automata. A similar system,

XTrie, is described in [9] by Chan et al. XTrie is a more efficient system than XFil-

ter; it identifies common sub-strings in the XPath expression and organizes them in

a trie∗, and also uses extra optimization techniques at run time. A related system is

detailed by Green et al. [20]; This again models the XPath expression as a finite-state

automaton—although here it is deterministic—and evaluates it against streamed XML

documents.

∗A tree for storing strings. There is one node for each common prefix, with the strings stored in leaf
nodes.

Chapter 2. Literature review 10

These systems all evaluate against the XML document itself, and pay no attention

to the related DTD or XML schema. The latter three also model the XPath expression

as finite-state automata and use the document as the input language. This project will

differ by using the document type and not the document, and by modelling the docu-

ment type as finite-state automata with the XPath expression as the input language.

Chapter 3

Materials and methods

This chapter introduces the theory behind the project, discussing finite-state automata,

XPath expression parsing, document navigation, and the problems associated with

them. It also includes conceptual design matters and design decisions. The theory

in this chapter is the basis for the implementation of the system discussed in the fol-

lowing chapter.

3.1 Finite-state automata

With the history of the finite-state automaton being covered in chapter2 this section

will concentrate on the underlying theory. To illustrate finite-state automata, this author

will borrow from the ‘sheep language’ example found in [23, p. 34]. The language of

sheep consists of strings like the following:

baa!

baaa!

baaaa!

baaaaa!

. . .

More formally, we can say that the language consists of strings that start with ab

and is followed by ana, then one or moreas, and finally an exclamation mark. This

can be represented with the regular expressionbaa+!. (The Kleene plus,+, indicates

11

Chapter 3. Materials and methods 12

q0 q1 q2 q3 q4

b a a

a

!

Figure 3.1: A finite-state automaton for a sheep language. The finishing state is repre-

sented as a dotted circle.

that the previous character must appear at least one time, up to an unbounded number

of appearances.) Figure3.1shows an automaton that models this regular expression.

An automaton recognizes a set of strings in the same way a regular expression does.

There are many ways to visually represent an automaton, but here it is as a directed

graph. There are a finite set of nodes (represented by labelled circles) and a finite set

of edges (directed links from one node to another, represented by arrows). The nodes

represent states in the automaton. An automaton has a starting state (hereq0), a set of

final states (here just one,q4), and a set of transitions represented by the arrows. The

automaton is used by giving it an input sentence. The FSA takes the input sentence and

uses it to move through the states and along the transitions to the finishing state. The

automaton starts in the start state and checks the first symbol of the input—in the sheep

language each letter represents a symbol. If the automaton matches the symbol and an

edge leaving the state, the automaton will follow it and move on to the next state and

advance one symbol in the input sentence. If the automaton reaches the end of the input

and is in a finishing state, then the machine has successfully recognized the sentence,

and the sentence can be considered an instance of the automaton’s grammar. The

automaton may never get to a finishing state, either because there is no edge matching

the current symbol, or because it finishes in a non-final state. In this case the input

sentence is not recognized, and it is not a valid instance of the automaton’s grammar.

As an example for this sheep language automaton,baaaaaaaaa!is a valid sentence

because the automaton can keep looping fromq3 to q3 until it reaches the exclamation

mark, upon which it can move to the finishing state,q4. However,baba! is not a valid

sentence because the automaton has no edge from stateq2 labelled with theb symbol.

Chapter 3. Materials and methods 13

twenty
forty
sixty
eighty

one
three
five
seven
nine

thirty
fifty
seventy
ninety

twenty
forty
sixty
eighty

thirty
fifty
seventy
ninety

two
four
six
eight

q0 q1 q2

Figure 3.2: A non-deterministic finite-state automaton.

Formally, a finite-state automaton can be defined as needing the following five

parameters:

• Q: a finite set ofn statesq0, q1, . . ., qn;

• Σ: a finite input alphabet of symbols;

• qo: the start state;

• F : the set of final states,F ⊆Q; and

• δ(q, i): the transition function between states. Given the stateq∈Q and the input

symboli ∈ Σ, the function returns a new stateq′ ∈Q.

3.1.1 Non-determinism

The automata discussed so far have been deterministic, i.e. there has been no decision-

making necessary since an automaton simply follows the correctly-labelled edges until

it runs out of input, or gets stuck. However, figure3.2shows an automaton that requires

Chapter 3. Materials and methods 14

some decision making. The automaton recognizes English words for the numbers

twenty through to ninety-nine. If the automaton takes as input a number that is a

multiple of ten, it has two possible edges from the starting state. To allow for this an

algorithm needs to be introduced that can handle non-determinism. There are three

standard solutions to this:

• Put a marker at every choice point, and then follow a possible transition. When

a wrong transition is taken, the algorithm backtracks to the last marker and tries

another path.

• Look ahead in the input to help make a decision on which path to take.

• At each choice-point try every path in parallel and drop those that eventually

prove to be a wrong choice.

The algorithm is not decided upon by the automaton; it is up to the programmer

to use the automaton with the algorithm of his choice. Note also that it is possible to

convert any non-deterministic automaton into a deterministic one, as proved by Rabin

and Scott [28].

3.2 XML schemas and automata

Key to XML Schema is its content model. The content model is used to define complex

types (not necessarily that complex since a complex type is any term in a schema that

contains more than just text). The content model is described in terms of particles,

which are terms in the schema grammar for element content. A particle has three

properties:

• term: one of an element declaration (specifying the element’s name and names-

pace), a wildcard, or a sequence or choice of particles.

• min-occurs: a positive integer denoting the minimum number of occurrences of

thetermthat is acceptable. If it is zero theterm is optional.

Chapter 3. Materials and methods 15

1 <element name=’head’>

2 <complexType>

3 <sequence>

4 <element ref=’t:title’/>

5 <element ref=’t:author’ maxOccurs=’unbounded’/>

6 <choice minOccurs=’0’ maxOccurs=’unbounded’>

7 <element ref=’t:date’/>

8 <element ref=’t:note’/>

9 </choice>

10 </sequence>

11 </complexType>

12 </element>

Figure 3.3: Extract from an XML schema.

• max-occurs: a positive integer, or∞, denoting the maximum number of occur-

rences of thetermthat is acceptable.

This list is deliberately brief; more details are available in [30].

The XML Schema content model is similar to—but more powerful than—regular

expressions. Whereas regular expressions use the Kleene plus, Kleene star (∗, al-

lowing for zero or more occurrences), and question mark (zero or one) to define the

occurrence range of a symbol, XML Schema allows the range to be explicitly and pre-

cisely defined. The content model is still a regular language however, and can therefore

be represented as a finite-state automaton. Each element or attribute declaration in a

schema that is of a complex type can be modelled as an automaton, so a schema itself

can be modelled as a collection of automata.

As an example, an extract of a schema is shown in figure3.3. The extract defines an

element namedhead, which has a complex type. Its content model defines a sequence

of elements starting withtitle, followed by one or more occurrences ofauthor∗, and

then followed by zero or more occurrences of eitherdateor note. Fundamentally, this

∗Note that themin-occursparameter is missing on line 5. When this happens, XML Schema defines
the default minimum occurrence as one.

Chapter 3. Materials and methods 16

q0

title

q1 q2

author
date
note

q3

author date
note

Figure 3.4: Automaton corresponding to the schema extract in figure 3.3.

allows theheadelement to contain a single documenttitle and any number ofauthors,

dates, andnotes. A finite-state automaton representing this content model is shown as

a directed graph in figure3.4.

At a basic level, XSV [29]—an XML schema validation tool from the University

of Edinburgh—works as above. It converts a schema to a collection of automata, and

uses these to validate the schema against the XML Schema specification. The automata

are actually augmented automata due to a need to cope with constraints XML Schema

places on particles, so there are some differences. However the theory is sound, and

the interested reader is directed towards [32].

XSV is used as the basis for this project. By parsing the XPath expression into

suitable sub-strings and using these sub-strings as input sentences for each automata

in the collection XSV produces, the collection of automata, it is possible to evaluate

XPath expressions against XML schemas.

3.3 Parsing XPath expressions

XPath expressions were mentioned briefly in section1.1on page4. They will now be

discussed in more detail, with references to the Backus-Naur form grammar used to

specify the language formally, as reproduced in appendixA on page54. All instances

of XPath take the form of an expression. An expression is a complex and powerful

construct that is recursively defined (it is not at all uncommon to find that an expression

contains an expression that contains an expression, etc.). There are several types of

expression, the most important being thelocation path. This construct is the primary

means of navigating through the document tree. Formally, it selects a set of nodes

relative to the context node. A location path is made up of a number oflocation steps.

Chapter 3. Materials and methods 17

Each location step selects a set of nodes relative to the context node, and each node in

that set is used as a context node for the following location step. The final step’s sets

of nodes are unioned together, and this is used as the result of the location path as a

whole.

Steps in a location path are separated by solidi. If a location paths starts with a

solidus it is absolute, and the preliminary context node is the root node∗. If the path

starts with a location step (i.e. without a prefixed solidus) it is relative and no context

node is given explicitly in the path. Usually XPath is used in conjunction with another

language, and this would supply the context node. However, in this project XPath is

used in isolation so this implementation will need to include an algorithm to supply

possible context nodes (see section4.4.1).

As an example (taken from [11]), take the location path:

child::div/child::para

This selects thepara children of thediv children of the context node—in other words

thepara element grandchildren of the context node that havediv element parents. In

this example, the relationship between the context node and the current step is is given

before the:: delimiter, in this casechild. This is known as an axis, and XPath defines

thirteen axes as shown in table3.1 on the following page. The axes overlap quite

substantially and can be partitioned into two sub-sets, viz. forward axes and reverse

axes. Forward axes includechild, descendant, following-sibling, following, attribute,

namespace, and descendant-or-self, and always move downwards in the document

tree. The other axes are classed as reverse axes, and always move upwards in the

document tree. The exception is theself axis, which can be classed as either since it

doesn’t move from the context node.

The axes are extremely important given the use of finite-state automata, as they add

a great level of non-determinism. Take thedescendantaxis: this may involve moving

along multiple transitions in one step, for instance if the resulting node set includes

children of children. Since an XML schema is held as a collection of automata, it will

be necessary to move not just from state-to-state, but from automaton-to-automaton. It

∗The root node is a special node, denoted/, that sits above the document root element in the
document tree. It cannot contain anything other than the root element.

Chapter 3. Materials and methods 18

Table 3.1: Axes defined by XPath.

Axis name Description

child Children of the context node.

descendant Any node at a lower level of the tree, but within the same

branch. Children, children of children, etc.

parent The node directly above the context node.

ancestor Inverse ofdescendant. Contains the parent node, its parent,

and so on up the tree to the root node.

following-sibling All the following siblings of a node (i.e. any node with the

same parent that is to the right of the context node in the tree).

preceding-sibling Siblings with the same parent but to the left of the context node

in the tree.

following Any node in the tree that follows the context node in document

order, excluding descendants, attributes, and namespaces.

preceding Any node in the tree that precedes the context node in docu-

ment order, excluding ancestors, attributes, and namespaces.

attribute Contains attributes of the context node. Empty unless the con-

text node is an element.

namespace Contains the namespace nodes of the context node. Empty

unless the context node is an element.

self The context node itself.

descendant-or-self Contains the context node itself along with its descendants.

ancestor-or-self Contains the context node itself along with its ancestors.

Chapter 3. Materials and methods 19

is clear then, than any algorithm employed will need to look ahead across states and

automata to find acceptable transitions.

After an axis specifier in a location step come its two other component parts, a node

test and a (possibly empty) set of predicates. The node test is fairly self explanatory,

and is true only if the node being tested has the same namespace and local name. It

is complicated slightly by the inclusion of wildcards which can match node types (e.g.

elements, attributes, comments). In the most recent example, the node tests arediv and

para. These are testing against element names, and do not specify a namespace.

The predicate list is the most interesting part of a location path, simply because of

its definition (line numbers equate to those in appendixA):

35 Predicate ::= ’[’ PredicateExpr ’]’

36

37 PredicateExpr ::= Expr

A predicate can contain any type of XPath expression, meaning that a location path

can if required contain any number of nested location paths. Successful parsing and

handling of predicates is clearly the most complicated part of location paths.

The Backus-Naur form definition of XPath lends itself very well to an object-

oriented implementation. XPath has been defined so that it builds upon itself as much

as possible. By modelling the non-terminal symbols in the grammar as objects this

should make implementing location paths and its recursive predicates somewhat eas-

ier.

3.3.1 Abbreviated syntax of location paths

Those location steps anticipated to be the most frequently appearing are allowed to

be shortened as shown in table3.2 on the next page. Any algorithm used to parse

XPath expressions must be capable of handling both the abbreviated and unabbreviated

syntax. This need not be complex and should be possible by parsing a given location

path and replacing any abbreviated steps with their verbose equivalent, and then always

working on a full unabbreviated path.

Chapter 3. Materials and methods 20

Table 3.2: XPath’s abbreviated syntax. In the final two rows, any node test can be part

of the abbreviated syntax but type and para are used as examples.

Abbreviation Verbose equivalent

// descendant-or-self::*

. self::*

.. parent::*

@type attribute::type

para child::para

3.4 Location paths as automata input sentences

XPath was designed to be evaluated against an XML document tree. In this project

the model is twisted slightly by evaluating against a document’s XML schema, so the

actual XML document tree is useless. So how does the evaluation take place? The

evaluator must build feasible document trees that both conform to the schema and

agree with the XPath expression. An evaluation will be successful if it creates a docu-

ment tree from the schema that will allow the XPath expression to return a non-empty

node set. It is this abstract property that sets this project aside from previous XPath

evaluators. The discussion will now move onto parsing location paths for use with

automata, and this focus on possible, rather than concrete, structures will be important

to the choice of parsing method.

Just as the with the sheep language on page11, the location path will need to

be separated into a set of input symbols that can be used to move from state to state

in a finite-state automata. In the sheep language it was individual characters, and with

XPath it seems obvious from the previous section that these symbols should be location

steps. The question now is how to use these steps with the finite-state automata to get

the required result. The two options considered here are parsing from left-to-right in

the path, and from right-to-left.

Chapter 3. Materials and methods 21

3.4.1 Left-to-right parsing

A left-to-right parser starts with the first location step and attempts to create a feasible

document tree from that point. It is similar to a top-down parser, moving from the top

of the tree, down to the bottom, but of course XPath allows location steps to move up

or down a tree, so it is not entirely synonymous.

In its attempts to evaluate the location path successfully, the parser will have two

major algorithms. The first will be concerned with forward axes (downwards through

the tree), and the second with reverse axes (upwards through the tree). The forward

algorithm will be moving through the automata as normal, from state to state as it finds

children, descendants, etc. that conform to the location step. But the reverse algorithm

will be concerned with the path already taken by the forward algorithm. For instance,

theancestoraxis contains the parent of the context node, its parent, its parent’s parent,

and so on up to the root node. If the location path is absolute, then the path already

taken will contain all these nodes. However, if the location path is relative it will come

to a point when the parent is not specified. To cope with this the reverse algorithm

will need to be augmented with a method of reversing through the automata to find

complete the location step.

3.4.2 Right-to-left parsing

The right-to-left parser starts from the last location step and moves in reverse through

the path. Whereas the left-to-right parser is attempting to find a feasible document tree

from the source, this parser takes all the nodes that could be part of the resulting node

set, and attempts to create a document tree from the bottom up that leads to the source

context node. The algorithm needs to find all nodes that comply with the location

step’s node test, and then use the step’s axis to create a document tree in reverse to get

to nodes that comply with the location step to the left of it (i.e. the previous step in the

path). This technique has many problems, especially when it comes to reverse axes. A

reverse axis would require the algorithm to create a sub-tree that could connect to the

top-level nodes in the current tree. For example, take the sub-path:

child::para//ancestor::div

Chapter 3. Materials and methods 22

1 <element name=’code’>

2 <complexType mixed=’true’>

3 <choice minOccurs=’0’ maxOccurs=’unbounded’>

4 <element ref=’eg:emph’/>

5 <element ref=’eg:code’/>

6 </choice>

7 </complexType>

8 </element>

Figure 3.5: An example of recursive definitions in XML Schema.

As the parser is moving from right-to-left, it would look at theancestoraxis first.

A tree would need to be created that ran from thediv element to thepara element

(essentially the same as the left-to-right algorithm). The complexity of this technique,

along with its potential for mistakes, led to it being discarded as an option. Instead, the

left-to-right parsing technique was chosen.

3.4.3 Advantages and disadvantages of left-to-right parsing

The left-to-right parser has its own advantages and disadvantages. It never wastes time

exploring trees that cannot begin with the context node, since it generates only those

trees. However it may spend considerable time looking at trees that are not consistent

with the following steps, arising from the need to generate trees as it moves through

the location path.

It also suffers from problems with recursion. Consider the fragment of an XML

schema in figure3.5, defining an elementcode. On line 5, the schema segment allows

thecodeelement to contain acodeelement. This recursive definition means the eval-

uator could attempt to create an infinite tree in the search for a tree that matches the

XPath expression. Clearly this problem will need to be resolved in the implementation,

and it is discussed further in section4.5.

A final problem is with the repeated parsing of sub-trees. In its effort to evaluate

the XPath expression, the algorithm may end up searching through the same sub-trees

again and again. The parser may build a valid sub-tree, for example for a regularly

Chapter 3. Materials and methods 23

used element and its children, only for it to be discarded because it doesn’t match the

location step—and then use it again in the next step. While this doesn’t impact on the

final result of the evaluation, it would be an efficiency improvement if sub-trees were

to be reused.

3.4.4 A note on the Earley algorithm

The Earley algorithm [14] is a linguistic parsing technique for context-free grammars

that removes the problems associated with top-down and bottom-up parsing, and re-

duces a possibly exponential-time problem to polynomial-time. The idea was briefly

entertained that the algorithm could be used in this situation, to remove the problem of

recursion from the parsing algorithm. After discussion however, this idea was forgot-

ten.

3.5 Navigating the document tree

In [18, 19], Gottlob et al. show that ten of the thirteen axes in XPath can be defined

using just two primitives and their inverses. These two primitives arefirstchild, which

returns the first child of a node, andnextsibling, which returns the next node in docu-

ment order with the same parent. The definitions of the axes using these primitives are

shown in table3.3 on the next page. Some of the axes are defined in terms of others,

but note that they are acyclic. Implementing these primitives rather than ten separate

axes will reduce the complexity of the algorithm. Once the two primitives are in place,

implementing the forward axes should not be as complex as it would have been to im-

plement them all independently. Of course in the original papers, these primitives were

designed for use on XML document trees, so thefirstchild primitive would return the

first child. This thesis is using document types, and so thefirstchildprimitive will need

to be changed slightly to return aset of nodesthat arefeasiblefirst children. Likewise,

the nextsiblingprimitive and the inverses will not return definitive nodes, but sets of

nodes containing possibilities. It will be up to the algorithm to decide which node to

use, by attempting evaluations using each returned node in turn.

The three remaining axes are special cases and need to be dealt with separately.

Chapter 3. Materials and methods 24

Table 3.3: XPath axes in terms of two primitives and their inverses. Based on table on

page 2 of [19].

Axis Definition in primitive terms

child firstchild.nextsibling∗
parent (nextsibling−1)∗.firstchild−1

descendant firstchild.(firstchild∪ nextsibling)∗
ancestor (firstchild−1 ∪ nextsibling−1)∗.firstchild−1

descendant-or-self descendant∪ self

ancestor-or-self ancestor∪ self

following ancestor-or-self.nextsibling−1.nextsibling∗.descendant-or-

self

preceding ancestor-or-self.nextsibling−1.(nextsibling−1)∗.descendant-

or-self

following-sibling nextsibling.nextsibling∗
preceding-sibling (nextsibling−1)∗.nextsibling−1

The self axis simply needs to return the context node, andattribute andnamespace

return their respective node sets.

Chapter 4

Implementation

This chapter covers the implementation of the theory that was espoused in the previous

section as a Python program. As mentioned briefly in chapter1, the system detailed

here is not a complete implementation of XPath expressions—it should be thought of

instead as a proof of concept. The system implements six forward axes,self, child, de-

scendant, descendant-or-self, following-sibling, andattribute. It also supports names-

paces, but not thenamespaceaxis (a minor addition that time would not allow for).

The program evaluates location path expressions, and can handle a sub-set of the pred-

icate construct that includes evaluation of binaryor and binaryand expressions, and

existence-checking. Note that in node tests only literal names are supported, and func-

tions and wildcards such asnode()and∗ are not. Due to this lack of wildcard support,

the XML Schema elementsanyandanyAttribute—which allow a document to include

any element or attribute even if they are not defined in the schema—are not currently

supported either.

4.1 Collecting unknown data

Some data are required to run the evaluation that are simply not available to the pro-

gram, and must be supplied by the user, viz. the document root element and the

schema’s namespace prefixes. While an XML schema defines the valid structure of

a document, it does not specify a document root element. Any element in the schema

25

Chapter 4. Implementation 26

1 <?xml version=’1.0’?>

2 <schema xmlns:eg=’http://example.org/’

3 targetNamespace=’http://example.org/’

4 xmlns=’http://www.w3.org/2001/XMLSchema’>

5

6 <element name=’doc’>

7 <complexType>

8 <sequence>

9 <element ref=’eg:head’ minOccurs=’0’ maxOccurs=’1’/>

10 <element ref=’eg:body’/>

11 </sequence>

12 </complexType>

13 </element>

Figure 4.1: XML schema fragment showing the use of namespace prefixes.

can act as the root element in which all other elements are held as long as the document

conforms to its content model. In practice, by defining an element in the schema but

not referencing it in any other element’s content model, most schemas are designed

with a single element implicitly defined as the document root. (As it is unreferenced,

it can only be used in the document as a container for all other elements, i.e. the doc-

ument root.) However this is not necessarily so, and the only way to be sure of the

document root is to have it specified by the user as a command-line argument.

Namespaces are referenced in an XML schema using prefixes. Figure4.1 shows

an schema fragment which includes the namespacehttp://example.org/that uses the

prefix eg (line 2). The prefix rather than the full namespace is used throughout the

schema (see lines 9 and 10). Prefixes are also used in XPath to denote namespaces,

partly due to the fact that namespaces use solidi as delimiters (e.g. uniform resource

identifiers such ashttp://example.org/), and so could cause problems parsing location

paths, which also use solidi to delimit location steps.

The program itself does not directly access the XML schema. It passes the schema

to XSV for validity checking, and uses the result set from that check to evaluate the

Chapter 4. Implementation 27

location paths (see below, section4.2). Therefore, the system does not have access to

the namespace prefixes defined in the schema. While XSV keeps track of the actual

namespaces it does not keep the prefixes. Thus, in translation from schema to XSV

result set, the namespace prefixes are lost. In order to retain the prefixes, they must be

included along with the namespace they point to as a command-line argument. Note

that the prefixes are only for use in the location path and so they need not be the same

as those used in the schema.

Along with the document root element, the XML schema and the XPath location

path make up the minimum data required to perform evaluation. Only if the XML

schema contains namespaces are the prefixes required.

4.2 Obtaining the finite-state automata

XSV can be used as both a command-line tool and a utility for other programs. The

system here uses it as a utility, hiding it from the user. The XML schema file name is

passed by the user as a command-line argument, and it is then passed onto the XSV

driver. The XSV driver performs a validation and restriction-check on the schema in

the file, and returns an extensive result set. For the purposes of XPath evaluation most

of it is superfluous, the exceptions being an XML document defining success or failure

and XSV’s internal model of the schema. If the XML document indicates success the

system knows the schema is valid and evaluation can take place. From here the system

can extract the schema’s element table from the XSV result set.

The element table is XSV’s method of storing the elements, attributes and their

content model. The element table contains each element’s name along with its names-

pace, content type, attribute declarations, and a finite-state automaton representing its

content model. The element table also contains many more data and functions that

are not needed for XPath evaluation, so the program separates the useful data into a

custom element table. It is this that provides the basis for the evaluation.

Chapter 4. Implementation 28

q0 q1

header

doc element

q0body element q1

para
image

para
image

body footer

q2 q3

Figure 4.2: Two connected automata.

4.2.1 Using multiple automata

To perform the evaluation the automata need to be used together. For example, take the

location path below (note the use of thef namespace prefix in the node tests, separated

from the element name by a single colon):

/child::f:doc/descendant::f:image

Two automata representing a possible schema fragment for this location path are

given in figure4.2. To find out if thedoc element can haveimagedescendants, the

system needs to traverse two automata, first for thedoc element, then for thebody

element below that to come to animagedescendant. To find that the location path is

feasible the system moves from stateq2 in the first automaton to the starting state in

the second automata. That state has an edge leaving it labelledimage, proving that the

location path can be evaluated successfully. Individual automata only list an element’s

children, and its children’s siblings in that context. To find a child’s children, the

system moves to another automaton and continues through that until it finds a match,

moves onto another automaton, or reaches a finishing state. Eventually it will reach a

match or come to the end of the automata in which case it will fail.

Chapter 4. Implementation 29

Note that the system does not need to leave each automaton in a final state, be-

cause the location path may only specify a fragment of a full document. While thedoc

element may requireheader, body, andfooterchildren, the location path is only inter-

ested in whether it can have animagedescendant. The location path above is evaluated

successfully while leaving the top automaton in stateq2.

4.2.2 Handling non-element nodes

The XSV automata only contain element data. Since all other node types are leaf data

in the document tree, there is little point including them in the automata as the edges

would all lead to the final state. Instead they are held in the element’s declaration,

outside its automaton. Attributes are held in their own table, and an existence-test

can be done by simply checking whether the attribute exists in the element’s attribute

declaration table. The element’s content type is used to see whether an element can

contain content other than elements (i.e. text), and node types such as comments and

processing instructions can occur anywhere within an XML document—although these

are not supported in this implementation.

4.3 Handling XPath expressions

After the program is passed the location path, the first operation is to ensure all its

location steps are in their unabbreviated form. This is done by splitting the path into

steps, and checking their form. If it is abbreviated, then it is replaced by the verbose

form. The location steps are then compiled into an unabbreviated location path, and

this is used for the duration of the program. There is some inefficiency in this process

since the next step in the program splits the location path again to convert each location

step into an object-oriented form. A future version would do well to combine these

two processes so to split the location path only once. Figure4.3on the following page

contains a code fragment of the unabbreviating algorithm.

Each location step is split into its axis specifier, node test, and predicate list. In

addition, the node test is split into its namespace prefix and name test, and the predicate

list is split into individual predicates. All the component parts are held in an object-

Chapter 4. Implementation 30

1 if locationStep == "":

2 unabbreviatedLocationPath += "descendant-or-self::node()/"

3 elif locationStep == ".":

4 unabbreviatedLocationPath += "self::node()/"

5 elif locationStep == "..":

6 unabbreviatedLocationPath += "parent::node()/"

7 elif locationStep[0] == "@":

8 unabbreviatedLocationPath += "attribute::" + locationStep[1:] + "/"

9 elif locationStep.find("::") < 1:

10 unabbreviatedLocationPath += "child::" + locationStep + "/"

11 else:

12 unabbreviatedLocationPath += locationStep + "/"

Figure 4.3: Simple algorithm to unabbreviate location paths.

oriented manner, the most interesting of which is the predicate. One type of predicate

supported is the binary expression, made up of two unary expressions separated by

an operator—one of eitheror, or and. The unary expression is simply a wrapper for

a location path. Thus a binary expression is a way of evaluating two location paths.

These predicates can be used for existence-checking, as shown in the expression below.

/child::customers/child::customer[descendant::curracc or descendant::creditard]

The second location step has anor predicate, used to check if thecustomerelement

has either acurraccorcreditcarddescendant. If either of these descendants are feasible

the predicate will evaluate to true. To evaluate predicates, a recursive evaluation is run

on each location path in the expression. In the expression above the two location paths

in the predicate are relative, not absolute. So that the evaluator knows that the context

node iscustomer, the axis specifier and node test are prefixed as a separate location

step. Thus, the two expressions evaluated would be:

child::customer/descendant::curracc

child::customer/descendant::creditcard

Chapter 4. Implementation 31

This leads to the obvious question ‘How does the evaluator know the context node

of this new location path?’ The answer is that it doesn’t matter. If thecustomerelement

can contain acurraccdescendant under any context node, then it can also contain it as

the child of thecustomerselement. This is due to thecustomerelement being defined

only once in the XML schema, and so its possible content will be the same regardless

of its parent. The problem of finding the context node for a relative location path is

dealt with in the following section.

4.4 Evaluation

This section describes the actual process of evaluation used in the program, including

finding the context node for relative location paths and implementing the axes in terms

of thefirstchild andnextsiblingprimitives discussed in section3.5.

4.4.1 Finding the context node

If the location path passed to the program is relative, the context node needs to be

discovered before evaluation can take place. In fact, there may be more than one

possible context node when evaluating against the document type. Given the first step

in the location path, the context node could be any node that could contain the step,

e.g. if the first step isdescendant::a, the context node could be any node that allows

a elements as their descendants.

The program needs to find all possible starting points for the evaluation. To focus

briefly on element nodes, the first step is to find all occurrences of the node in the

finite-state automata. Each automaton needs to be searched through fully to see if any

edges are labelled with the element name. Each time an edge labelled with the ele-

ment’s name is found in a finite-state automata the edge is added to a list. Once all the

automata have been checked, this list contains all possible occurrences of the element

in the document tree, i.e. valid starting points for the evaluation. From here possible

context nodes could be found. For many XPath expressions, it may be satisfactory to

find a starting point without knowing the actual context node. For example, the sys-

tem detailed here supports only forward axes, and so once a starting point is found,

Chapter 4. Implementation 32

the document tree can be followed from there. The context node is important however

when evaluating reverse axes, as the context node will show which nodes appear in a

document tree before the first step. For the purposes of this system the actual identity

of the context node is not important, and it remains anonymous. As long as a relative

location path is evaluated successfully it shows the the expression is valid according to

some pointin the XML schema. If the user wishes to test for a specific context node

they can make the location path absolute.

Of course, some relative location paths are essentially the same as some absolute

location paths. There is little difference between these two expressions:

/descendant::element/attribute::type

and

child::element/attribute::type

While the top expression is absolute, it is merely saying ‘The root has below it

some descendant element namedelementwith an attributetype.’ The second, relative,

expression is saying ‘The context node has a child namedelement, with an attribute

type.’ The difference between the two to the program is that the evaluation of the first

expression will start off at the root and find a path toelement, while the evaluation

of the second will start from each of the points thatelementcan be at in a document,

without knowing its relationship with the root node (cf. section5.3).

A location path need not start with an element. The program also supports at-

tributes, in which case it searches through the element table looking for elements that

can contain such an attribute node. The program only supports literal names in node

tests, but it is possible for a node test to include wildcards (* selects all element and at-

tribute nodes,node()selects all nodes). In this case, the number of starting points could

be huge—if the location path was absolute and started withdescendant::node()

then any node in the the document tree would be a feasible starting point. Note also

that XPath has tests for processing instructions, comments, and text nodes. Without the

actual XML document, the former two tests always evaluate to true, since a processing

instruction and a comment can appear anywhere in a document as long as the syntax is

valid. The latter test for text nodes needs to check an element’s content model, and is

not supported in this implementation (see section4.6).

Chapter 4. Implementation 33

4.4.2 Location steps, axes, and primitives

Once the start points have been collected, the program starts an iterative execution,

attempting to evaluate the location path from each start point in the automata. If the

first location step is validated according to the schema (i.e. it can appear somewhere

in the defined document), the program takes the first location step as the context node,

and attempts to evaluate the next location step successfully. Once a location step is

evaluated, it becomes the context node, and the program moves onto the next location

step. If the program gets to the end of the location path with each location step evalu-

ated successfully, then the entire path is considered feasible, and a successful result is

returned.

The first step in evaluating a location step is to test whether it is valid according

to the schema, regardless of the context node. This is analogous to a word processor’s

spell-checking function. The program checks to see if the element or attribute name in

the location step’s node test appears somewhere in the schema (similar to looking up a

word in a dictionary). If it doesn’t there is no need to go any further as it is clear that

the expression will fail evaluation since the node cannot actually exist. If the element

or attribute does exist in the schema, then the location step’s axis specifier is examined,

and a function is called depending upon which axis is specified.

Each axis has a corresponding function, which is called as necessary, and is ex-

pected to return a node set based upon the axis and the context node. Take the follow-

ing location path as an example:

child::manufacturer/child::address

Firstly, all edges labelled with themanufacturerelement are used as start points.

This gives the program the positions in the document wheremanufacturercan be the

child of a node. To find out if it can have a child namedaddress, the functiongetChil-

dren is called, and the finite-state automata equivalent to themanufacturerelement’s

content model is passed as an argument. The function moves through the automata,

with each edge equivalent to a possible child. Each edge is added to a list, and this

list is returned as the node set containing themanufacturerelement’s children. Given

an XML schema that contains the fragment shown in figure4.4 and which results in

Chapter 4. Implementation 34

1 <element name=’manufacturer’>

2 <complexType>

3 <sequence>

4 <element ref=’eg:companyname’ maxOccurs=’1’/>

5 <element ref=’eg:address’ maxOccurs=’unbounded’/>

6 <element ref=’eg:companycontact’ minOccurs=’0’ maxOccurs=’unbounded’/>

7 </sequence>

8 </complexType>

9 </element>

Figure 4.4: XML schema fragment defining an element manufacturer.

q0 q1

companyname

manufacturer element

address companycontact

q2 q3

companycontact

Figure 4.5: Finite-state automaton corresponding to the definition in figure 4.4.

a finite-state automaton as shown in figure4.5, the functiongetChildrenwould return

the node set [address].

4.4.2.1 Axis functions and the firstchild and nextsibling primitives

The six functions corresponding to the axes are defined in terms of the two primitives,

firstchildandnextsiblingas discussed in section3.5and shown in table3.3on page24.

To recapitulate the discussion, in this abstract evaluationfirstchild takes a node as an

argument and returns a set of nodes that could each occur in a document as the first

child of the node. The other primitive,nextsibling, takes an automaton state and returns

a set of possible next siblings. All the forward axes can be defined in terms of these

two primitives. The implementation of these two primitives can be found in appendix

B.

Thus, the function corresponding to thechild axis calls thefirstchild function,

which returns a set of nodes that are possible first child nodes. Then, for each node in

Chapter 4. Implementation 35

the returned node set, thenextsiblingfunction is called. This will result in a node set

containing siblings for each of the possible first child nodes. For each node in the result

set, possible siblings have to be found for those too. This highly recursive algorithm is

run until all possibilities have been followed. The node sets are then unioned together,

and a set of possible children are returned as a result set. (Note that the function does

not create a document tree, but simply returns a set of possible children. This is done

to neuter the recursion problem discussed in section3.4.3, and is detailed below in sec-

tion 4.5.) The function to get the children of a node is probably the most complicated

axis function. In this implementation, it uses a nested function to achieve the required

results as efficiently as possible. The code for the function is shown in figure4.6 on

the next page.

The function to get a node’s descendants uses the function that gets a node’s chil-

dren. Each child node that the child axis function returns is passed recursively to the

descendant axis function until all possible descendants have been found. The node

sets are then unioned together and returned. The other axis functions work in a similar

manner, each returning a node set corresponding to the axis they relate to. This node

set is then used to evaluate whether the current location step is feasible or not. If the

location step is possible, then the returned node set should contain the node’s name. If

it does, then the location step is successfully evaluated, and the program can make that

the context node and attempt to evaluate the following location step. If the evaluation

of the step fails, then the location path evaluation itself fails, butonly according to

the start point used in this particular iteration. In this case, the program tries the next

possible start point in the automata. If the program runs through all the start points

unsuccessfully then the XPath expression is not valid according to the given XML

schema. If one particular start point yields a successful evaluation then the program

stops. The implementation’s main objective is to test whether location path is feasible

or not. There may be multiple ways to successfully evaluate the location path, but once

the program has found one, it exits successfully.

Chapter 4. Implementation 36

1 def getChildren(self, elementNamePair):

2 def getSiblings(self, fsmNode):

3 possSiblings = []

4 siblings = self.nextSibling(fsmNode)

5 for sibling in siblings:

6 possSiblings.append(sibling)

7 nextSiblings = getSiblings(self, sibling[1])

8 for nextSibling in nextSiblings:

9 if not nextSibling in possSiblings:

10 possSiblings.append(nextSibling)

11 return possSiblings

12 elist = []

13 firstChildren = self.firstChild(elementNamePair)

14 if firstChildren != None:

15 for child in firstChildren:

16 if not child in elist:

17 elist.append(child)

18 siblings = getSiblings(self, child[1])

19 for sibling in siblings:

20 if not sibling in elist:

21 elist.append(sibling)

22 return elist

Figure 4.6: Uncommented code for the getChildren function.

Chapter 4. Implementation 37

foo

bar

spam

foo

bar

spam

foo

...

Figure 4.7: Left-recursion problem when creating a document tree. The tree can never

be completed because an infinite number of possibilities are followed.

4.5 Removing the problem of recursion

The problem of recursion and infinite loops was mentioned in section3.4.3. The prob-

lem could occur if an element could contain itselfat any depth. For instance, a decla-

ration for afoo element may allow for abar child, which could contain aspamchild

that itself could have afoochild. Because of cyclic definition like this, building a doc-

ument tree becomes an incomputable task as the document tree is extended infinitely

as shown in figure4.7.

The solution to the problem in this implementation is simply not to build a docu-

ment tree. Instead, a node set of possibilities is used, as described previously. When a

function returns a node set of possibilities, it is in the form of a one-dimensional array,

not as a tree. Each time a function returns a node set, it is unioned with the current

node set, and duplicates are removed. Each node in the set is evaluated one-by-one

according to the needs of the axis, and its results are unioned with the node set, again

with duplicates removed. The evaluation of each node continues, until each node in

Chapter 4. Implementation 38

the set has been evaluated. Once the node set has been fully evaluated, the set will

contain one instance of each node that is contained within the axis. Because each node

is unique, it is only evaluated once. Thus in the example above, thefoo element will

not be added a second time, and so the recursion problem will be solved.

Since this implementation only supports forward axes, this solution works very

well. However, it will need to be augmented if it is to work with reverse axes also. The

node set is one-dimensional, rather then being a tree. Because of this, the level that

a given node is below the context node cannot be discerned. As an example, take the

location path:

child::foo/descendant-or-self:foo

This location path is guaranteed to evaluate to true, since in the second location

step the context nodefoowill always match theself axis. The returned node set would

be [foo]. This tells the program that the location step is valid, but it doesn’t tell it

how it is valid. The location step might match to any of the document trees as shown

in figure 4.8 on the next page. For the reverse nodes to work there will need to be a

record of the path taken to get to the current position. This will need to be added to

the solution before the reverse nodes can be implemented. It could be done by adding

a list of possible routes to each node. This of course would reintroduce the recursion

problem, and so perhaps some sort of sub-tree matching and reuse could be used.

4.6 Simple types

The discussion so far has centred on XML Schema’s complex type, and has somewhat

neglected its fellow type definition, the simple type. This section will attempt to redress

the balance a little, by including a brief discussion of simple types. While more modest

than their complex counterparts, the name is slightly misleading—simple types are not

necessarily simple. An element defined with a simple type can indeed only contain

text, however the text can be of a certain type. XML Schema contains definitions

for numerous data types including strings, integers, Booleans, and times and dates, as

well as allowing custom types to be defined within schema instances. Content can be

Chapter 4. Implementation 39

foo

bar

spam

foo

foo

foo

foo

foo

foo

foo

bar

bar

foo

...

Figure 4.8: Examples of trees that could match the node set returned by the location

path child::foo/descendant-or-self::foo.

restricted by adding facets to data types, and by requiring the data to match defined

patterns.

Even with the capabilities that simple types add to XML Schema, they have no

need for finite-state automata. They cannot contain attributes or other elements, and so

there is simply no use for an automaton. This lack of an automaton means that simple

types are regarded as leaf nodes in this implementation, whereas in an XML document

tree the content of the type would sit below it as the leaf node. If the program comes

upon a node defined using a simple type within a location path, it must be at the end for

the evaluation to be successful (this would obviously change if the reverse axes were

implemented). The XPath recommendation allows for the content of simple types to

be tested (e.g. only selecting elements whose content is an integer), although this is not

supported in this implementation due to the time constraints.

Attributes Note that attributes are always defined as simple types, which is why they

do not need finite-state automata. An element can take an already defined attribute

and augment it for its own uses, and therefore the program holds attribute declara-

tions within an element declaration to ensure that an augmented attribute does not get

mistaken for its base type.

Chapter 5

Analysis

This chapter covers a discussion of the working program. It includes examples of

the program in action and tests to show the success and limitations of its location

path evaluation. Future work is also discussed, including practical and speculative

suggestions for further implementations.

5.1 Command-line interface

The program runs as a command-line utility, with all the advantages and disadvantages

that this implies. While it is reasonably cryptic in its syntax and not particularly user-

friendly, it can be used in conjunction with other programs. The program outputs a

success or failure message for the user, but it also indicates the result of the evaluation

with its exit code. An exit code of -1 indicates an unsuccessful evaluation; 0 indicates

the evaluation did not take place; and 1 indicates successful evaluation. These exit

codes can be used by other programs to manipulate the program and do evaluations of

there own, using it as a slave. Examples of user input and program output can be found

in appendixC.

In its current form the program is of little use in command-line piping construc-

tions. The output is fairly useless in such a scheme, being just a human-readable suc-

cess or failure string. For it to be of any use in a command pipe, the program should

output possible paths the XPath expression could take through the theoretical XML

40

Chapter 5. Analysis 41

document.

5.2 Testing the program

As proof that the evaluator works in line with the XPath recommendation, this section

contains tests for each of the supported axes. It also discusses the evaluation of location

steps that include predicates, and some problems that were found with the implemen-

tation. Due to the terse—and quite frankly dull—program output it is not included in

this section; the results of each test are given however.

Throughout this section only one schema is used to demonstrate the tests, and is

listed in appendixD. The program was tested on multiple schemas during develop-

ment, but it was felt for ease of reading only one was needed to demonstrate these

tests. The schema uses a single namespace,http://example.org/which is synonymous

with the prefixegused in these tests. Two further details to note is that throughout the

tests thedocelement from thehttp://example.org/namespace is used as the document

root element, and that the attributes defined in the schema have no namespace.

5.2.1 Self axis

The self axis is the simplest of all axes, because it contains only the context node.

The program only matches name literals in a location step’s node test, and so the

evaluation here is simply to check whether the namespace prefix and the node name

given in the location step match the namespace and node name of the context node.

Using the program to evaluate the first two expressions in table5.1, the first evaluates

to true, while the latter evaluates to false. Note the unexpected result using the third

expression. Theunreferencedelement is included in the schema (lines 202–208) to

show up this bug. This element cannot be part of a document when the document root

element isdoc, as it is defined as sitting abovedocin the document tree an is referenced

by no other element. This bug occurs due to a mishandling of the first location step in

a relative location paths (using any axis) and is covered in section5.3.

Chapter 5. Analysis 42

Table 5.1: Results from evaluating the self axis.

Location path Expected result Actual result

/eg:doc/self::eg:doc True True

descendant::eg:list/self::eg:item False False

self::eg:unreferenced False True

5.2.2 Child axis

As mentioned in section4.4.2.1, thechild axis is the most complicated axis supported

by the program. Although thedescendantaxis is seemingly more complex, it can be

defined in terms ofchild, so it is essential the that axis works as intended. The results

laid out in table5.2 use the abbreviated form of location paths when using thechild

axis.

Table 5.2: Results from evaluating the child axis.

Location path Expected result Actual

result

/eg:doc/eg:body/eg:div/eg:list/eg:item True True

/eg:doc/eg:image False False

eg:unreferenced/eg:note False False

eg:code/eg:code True True

5.2.3 Descendant axis

The descendantaxis is the most interesting of the supported axes since it is the one

that would suffer from the left-recursion problem discussed in sections3.4.3and4.5.

Table3.1 on page18 suggests thatdescendantaxis should be implemented using the

firstchild andnextsiblingprimitives. However, it can be simplified slightly by using

thechild axis function and thenextsiblinginstead.

The results shown in table5.3 prove that the recursion problem has been solved

in this implementation, purely on the basis that results are always returned. In the

Chapter 5. Analysis 43

schema used, both thecodeandlink elements are defined so they can contain instances

of themselves. The program handles these recursive definitions comfortably.

Table 5.3: Results from evaluating the descendant axis.

Location path Expected result Actual result

eg:code/descendant::eg:code True True

eg:link/descendant::eg:link True True

/descendant::eg:image True True

eg:image/descendant::doc False False

5.2.4 Descendant-or-self axis

Thedescendant-or-selfaxis is implemented by unioning the results of thedescendant

andself axes together. As such, if these two axes work the by definition so will the

descendant-or-selfaxis. Compare the first two results in table5.4: the first evaluates

true against the context node (using theself axis), while the second fails because the

docelement cannot contain itself at any level. The third result is essentially the same

as the third result in table5.3.

Table 5.4: Results from evaluating the descendant-or-self axis.

Location path Expected result Actual result

eg:doc/descendant-or-self::eg:doc True True

eg:doc/descendant::eg:doc False False

/descendant-or-self::eg:image True True

5.2.5 Following-sibling axis

The following-siblingaxis is implemented by following all edges from a single state

in a finite-state automaton. The state indicates the position of the context node, and

each edge that can be followed from that state is the equivalent of one or more possible

following siblings (an edge can be labelled with more than one node). Once these

Chapter 5. Analysis 44

edges have been collected and unioned together, the program has a list of possible

following siblings. The program can then follow the general algorithm discussed in

section4.4 to evaluate the location step. This essentially consists of testing whether

the node name and namespace given in the step’s node test is in the set of edges, and

results of such evaluations are shown in table5.5. Note results three and four, which

show how you can step through each child of the context node in turn.

Table 5.5: Results from evaluating the following-sibling axis. The ↘ symbol indicates

the location path continues on the subsequent line.

Location path Expected result Actual

result

/eg:doc/eg:head/following-sibling::eg:body True True

eg:head/following-sibling::eg:body/↘
following-sibling::eg:body False False

eg:title/following-sibling::eg:div/↘
following-sibling::eg:p True True

/descendant::eg:p/child::eg:emph/↘
following-sibling::eg:code True True

5.2.6 Attributes and predicates

Attributes are discussed here with predicates because it is there that they are the most

interesting. Attributes can of course be part of a location path outside of its predicates,

but they will always be leaf nodes. It is relatively simple to do an existence check on

an attribute given the context node’s attribute declarations.

Used inside a predicate binary expression however, they add an extra factor to

location paths. For example, the following expression only includesfoo elements if

they include either atypeor apart attribute:

foo[@type or @part]

(equivalent to)

child::foo[attribute::type or attribute::part]

Chapter 5. Analysis 45

As discussed in section4.3, the program handles predicates by extracting them

individually from the location step, reformatting them as one or more location paths

which include the context node, and evaluating them as location paths in their own

right. The single predicate above has two location paths inside it, separated by theor

operator. Tables5.6and5.7show the steps involved in evaluating a location path with

predicates. The former table successfully evaluates the path with anor predicate, while

the latter unsuccessfully evaluates anandpredicate. The subscript numbers used with

the truth values are merely to differentiate between particular true and false values, and

to show where each step is used in the evaluation.

Table 5.6: Steps in the successful evaluation of the location path

/eg:doc/descendant::eg:list[@term-width or @part].

Location path fragment Result

/child::eg:doc/descendant::eg:list True1

descendant::eg:list/attribute::term-width True2

descendant::eg:list/attribute::part False1

[True2 or False1] True3

True1[True3] True (overall result)

Table 5.7: Steps in the unsuccessful evaluation of the location path

/eg:doc/descendant::eg:list[@term-width and @part].

Location path fragment Result

/child::eg:doc/descendant::eg:list True1

descendant::eg:list/attribute::term-width True2

descendant::eg:list/attribute::part False1

[True2 or False1] False2

True1[False2] False (overall result)

The process is the same for a unary predicate, except only one nested location path

is required to evaluate it. Additionally, an unlimited number of predicates∗ can be

∗The XPath recommendation specifies an unlimited number of predicates, although in practice it
would be hard to actually support an infinite predicate set due to memory constraints, etc.

Chapter 5. Analysis 46

appended to each location step, and they will be evaluated in the same manner, with

each location step requiring the additional number of processes necessary to evaluate

each predicate. Note also that as predicates can be any type of location step, they can

also take a form such as

child::foo[descendant::image]

so the node set will only includefoonodes that haveimagedescendants.

5.3 Bugs in the implementation

The tests described above brought to light two problems with the evaluator in its cur-

rent form, each of which means in certain circumstances the evaluator would produce

erroneous results. The first bug occurs due to the mishandling of relative location

paths, and the second involves the handling of predicates.

When the location path passed to the program is relative, it does not attempt to

create a path from the document root to the context node. The context node is, to

all intents and purposes, ignored. As long as there is an element or attribute in the

XML schema that corresponds to the node test in the first location step, that step is

evaluated successfully and the context node is assumed to sit above that node at a level

allowed by the axis (see section4.4.1). This works well in most circumstances, with

the exceptions.

The first is when starting with an element that only appears above the selected doc-

ument root element. Take the schema is appendixD: the unreferencedelement has

been added to the original schema deliberately to illustrate this. Theunreferencedel-

ement can only appear in a document above thedocelement, i.e. it can only contain

docelements and it is not referenced in any other element’s content model. Therefore

if you run an evaluation on the schema using an location path that references theun-

referencedelement, and usedocas the document root element, you would expect the

evaluation to fail. And indeed, using the expression

/descendant-or-self::eg:unreferenced

the evaluation does fail. However, if this expression is made relative and expressed as

Chapter 5. Analysis 47

descendant-or-self::eg:unreferenced

the evaluation is successful. Admittedly this problem is only likely to occur in excep-

tional circumstances—as mentioned previously, most schemas are implicitly designed

to include only one possible document root element—but any flaw in the program will

reduce a user’s confidence in its capabilities and is simply inexcusable. The short-term

solution is to make relative location paths that could suffer this problem into absolute

paths, but in the long-term this problem should be eradicated entirely. The problems

with the first location step in relative location paths can be solved by always finding a

path to a valid context node. Just as an absolute location path starts at the root element,

so to must a relative path. The system must be expanded so that when evaluating rela-

tive location paths the program must first find a path to a context node that allows the

first location step to be successfully evaluated.

This bug rears its ugly head once more when a relative location path starts with a

location step that usesfollowing-siblingas its axis specifier. If a node exists as specified

in the step’s node test, it is assumed that a context node can be found to fit the axis.

This is an erroneous assumption if, for example, the node in question can only appear

as the document root element. Again using the schema in appendixD, and takingdoc

as the document root element a location path including

following-sibling::eg:doc

should always fail. And indeed, using expressions such as

/following-sibling::eg:doc

and

self::eg:doc/descendant::eg:body/following-sibling::eg:doc

the evaluation will fail. Unfortunately, if a relative location path starts with

following-sibling::eg:doc

then the evaluation will succeed (assuming of course that the following location steps

are evaluated successfully).

It is important to note that these bugs affect only the first location step in a relative

location path, although it is equally important to note that they are unacceptable. Future

work should include the removal of these bugs as soon as possible.

Chapter 5. Analysis 48

5.4 Future work

This system described in chapter4 is by no means complete, and much work could

be done to improve or build upon it. The most obvious of this future work is to pro-

vide a full implementation of the XPath language. Currently six of the thirteen axes

are supported. Missing are the final forward axesfollowing andnamespace, and the

five reverse axes. Support for the two forward axes could be added using the current

framework, but this would need to be augmented if it were to include the reverse axes.

As it stands the system does not keep a record of the path it has taken to get to the

context node, and in order to evaluate reverse nodes such a record would be necessary.

In addition, the system has made use of two primitives,firstchild andnextsiblingto

implement the six axes. This has worked well, and it would be a canny move to use

this method for the reverse axis. The two primitives only allow movement forward

in the document tree and to extend this to reverse movement inverse primitives would

be necessary. These inverses, denotedfirstchild−1 andnextsibling−1, would select a

node’s parent (if any) and previous sibling (if any) respectively. With these additions

of path recording and primitive inverses the current system could be made to include

all thirteen axes in XPath.

After the axis in a location path comes the node test. This also requires some work

to do it full justice. Currently the system takes a node test and evaluates on name

literals only without supporting wildcards. While the addition of thecomment()and

processing-instruction()functions would be fairly trivial (they can appear anywhere in

a document, and so abstractly should always evaluate as true), others such asnode()

and* would add much complexity to the current algorithm. These complications could

be eased somewhat if a system of recording paths taken, as that recommended for

reverse axes, were used so backtracking were possible. This would allow the algorithm

to attempt paths based on a given element and back out if it was eventually found not

to be possible. Support for wildcards would go some way to implementing theanyand

anyAttributeelements of XML Schema, that allow for any element or attribute to be

used, even if they are undefined in that particular schema.

Axes and node tests are of main concern to location paths, which are but one type of

XPath expression (albeit the most prominent type). Further work should include sup-

Chapter 5. Analysis 49

porting the other types of expression such as functions and mathematical operations.

Although some expressions are of minor use when involved in an abstract evaluation of

XPath, it would be useful to implement them all. Some support is included foror and

and expressions, and other expressions such as multiplication, subtraction, addition,

etc. could use the binary expression system already in place. Other expressions, like

functions, would need the algorithms to be extended specifically to include them. Each

time an extra expression is supported, the capabilities of predicates would be extended

also. And once all expression types were supported along with the measures laid out

above the system could provide a full implementation of XPath.

5.4.1 A new technique

The technique discussed in chapter4 uses one-dimensional node sets rather than docu-

ment trees to evaluate location steps. The advantage of this is that it removes problems

with left-recursion, but it carries the disadvantage of making it hard to keep track of

which path has been taken while attempting an evaluation. The previous section pro-

poses augmenting the current system with the capability to record the path taken. This

section will propose a new way of evaluating XPath expressions. This method came

about during the final stages of implementing the current system, when the possible

limitations became apparent.

This theory proposes using document trees in some way, but modelling them as

ordered cyclic graphs. Figure5.1 on the next page models the schema in appendixD

as an ordered cyclic graph, as usual with thedocelement serving as the root element.

(For ease of reading the figure does not include attributes or leaf nodes.) Note the use

of sub-trees that are referenced by more than one element. The proposal is that the

finite-state automata are used to traverse the schema, but the cyclic tree is used to keep

track of the path taken while evaluating an expression. Recursion can be avoided by

keeping a flag at each node that is set once the evaluator has passed through it. The flag

can then be used to tell the evaluator whether it has been through the path already, and

thus avoiding recursion. Using cyclic graphs rather than node sets makes it much easier

both to keep track of the path taken by the evaluator, and to allow for back-tracking

so wildcards can be supported. This theory is in an early stage so it is not certain to

Chapter 5. Analysis 50

doc

head body

notedateauthortitle div

linknameemph code

title imagenotedisplaylistp

itemnote

Figure 5.1: An ordered cyclic graph representing an XML schema.

be better than an node set–based implementation, but any future work should consider

using such a system.

A final issue to include as future work is multiple evaluations. Currently the system

exits successfully as soon as it finds a path through the schema that allows it to evaluate

the XPath expression as true. A nice addition would be to continue until all possible

paths have been found. This would allow the program to expand its output from a truth

value to a set of all valid paths. The program could then interact with other programs

(e.g. in command-line pipes) in a much more valuable way.

Chapter 6

Summary

This chapter looks at the conclusions that can be made from the preceding material.

The hypothesis used as the basis of this work was given in the first chapter, and stated

that introducing an intermediate step before an XPath expression is evaluated against

an XML document instance would be a sagacious measure. This step would pro-

vide an abstract evaluation of the XPath expression against the document type—an

XML schema—to determine whether a concrete evaluation against the XML docu-

ment could, in principle, be satisfied.

In support of the hypothesis this thesis set out the method involved in converting

any given XML schema into a form that could be used to evaluate an XPath expression.

XSV, an XML Schema validation tool from the University of Edinburgh, was used

to convert XML schemas into a collection of finite-state automata that represented

the content models of the elements and attributes defined in a schema. The XPath

expression can then be modelled as an input sentence for the automata. The input

sentence is made up of symbols, in this case location steps, that are used to progress

through the automata. Once the end of the input sentence has been reached, the XPath

expression can be said to have been evaluated successfully, and therefore in principle

could return a non-empty node set when evaluated against the XML document itself.

If the end of the input sentence cannot be reached then the evaluation has failed and

has thus proved that further evaluation against the XML document would be pointless.

The project was successful in providing a partial implementation of the most im-

portant type of XPath expression, the location path. XPath defines this construct as

51

Chapter 6. Summary 52

having three components parts, the axis specifier, the node test, and a (possibly empty)

set of predicates. The first of these contains one of thirteen axes, six of which have

been implemented here. These six are all but two of the eight forward axes, i.e. those

that allow movement downwards through the document tree. The remaining unsup-

ported axes are those that allow movement upwards through the tree. By focusing on

the forward axes the project could use a system of one-dimensional node sets in place

of a document tree to evaluate the location paths. This system meant that possible

problems with left-recursion in trees was avoided.

Node tests are supported when using node name literals. This allows the XPath ex-

pression to evaluate against specific elements and attributes, but not against wildcard

structures. Multiple namespaces are fully supported in node tests by using correspond-

ing prefixes passed by the user. Predicates are supported only in part, mainly due to

the complexity of their structure. A predicate can contain any type of XPath expres-

sion, meaning that XPath expressions have a recursive design. A method to evaluate

expressions recursively was devised, and certain additional expression types were im-

plemented for use in predicates. Currently there is support for predicates that contain

location paths, binaryor expressions, binaryand expressions, and unary expressions

for existence-checking.

As is apparent from the previous paragraphs, a full XPath implementation was not

created. Although this was the original intention of the project the time-span did not

allow for it. XPath is a very complex language, and this was underestimated at the start

of the project. In order to complete the XPath evaluator, the reverse axes are needed,

along with wildcards in node tests, and support for the expression types other than

location paths. It would be possible to augment the current system with the neces-

sary additions to complete the implementation, the most important being to include a

method of recording the path taken through the document tree in order to evaluate the

expression. However a more interesting and possibly more efficient process would be

to use ordered cyclic graphs as well as finite-state automata to keep track of the path

taken through evaluation. It is suggested that any further work looks at expanding the

system to include such graphs.

The system has shown that the evaluation of XPath expressions against document

Chapter 6. Summary 53

types rather than the document itself is a feasible proposition. By evaluating expres-

sions in such a way it is possible to decide whether the evaluation against the document

is a worthwhile proposition or not. In doing so, this sort of evaluation can be used to fil-

ter out pointless and impossible evaluations before they take place. Inserting this sort

of evaluation as an intermediate step before a concrete evaluation took place would

be of some advantage to an XPath evaluator—providing efficiency gains for exam-

ple. Such a measure should be considered worthwhile, which leaves the hypothesis

satisfied.

Appendix A

XPath Backus-Naur form grammar

This appendix lists the Backus-Naur form grammar that is used to formally define the

XPath language in the W3C’s recommendation [11]. The grammar is spread through-

out the recommendation, and so it is reproduced here for ease of reading. Some parts

of the grammar (e.g.QName andS) are from the XML recommendation [7] and are not

repeated here.

1 LocationPath ::= RelativeLocationPath

2 | AbsoluteLocationPath

3

4 AbsoluteLocationPath ::= ’/’ RelativeLocationPath?

5 | AbbrAbsoluteLocPath

6

7 RelativeLocationPath ::= Step

8 | RelativeLocationPath ’/’ Step

9 | AbbrRelativeLocPath

10

11 Step ::= AxisSpecifier NodeTest Predicate*

12 | AbbreviatedStep

13

14 AxisSpecifier ::= AxisName ’::’

15 | AbbrAxisSpecifier

16

54

Appendix A. XPath Backus-Naur form grammar 55

17 AxisName ::= ’ancestor’

18 | ’ancestor-or-self’

19 | ’attribute’

20 | ’child’

21 | ’descendant’

22 | ’descendant-or-self’

23 | ’following’

24 | ’following-sibling’

25 | ’namespace’

26 | ’parent’

27 | ’preceding’

28 | ’preceding-sibling’

29 | ’self’

30

31 NodeTest ::= NameTest

32 | NodeType ’(’ ’)’

33 | ’processing-instruction’ ’(’ Literal ’)’

34

35 Predicate ::= ’[’ PredicateExpr ’]’

36

37 PredicateExpr ::= Expr

38

39 AbbrAbsoluteLocPath ::= ’//’ RelativeLocationPath

40

41 AbbrRelativeLocPath ::= RelativeLocationPath ’//’ Step

42

43 AbbreviatedStep ::= ’.’

44 | ’..’

45

46 AbbrAxisSpecifier ::= ’@’?

47

48 Expr ::= OrExpr

49

Appendix A. XPath Backus-Naur form grammar 56

50 PrimaryExpr ::= VariableReference

51 | ’(’ Expr ’)’

52 | Literal

53 | Number

54 | FunctionCall

55

56 FunctionCall ::= FunctionName ’(’ (Argument

57 (’,’ Argument)*)? ’)’

58

59 Argument ::= Expr

60

61 UnionExpr ::= PathExpr

62 | UnionExpr ’|’ PathExpr

63

64 PathExpr ::= LocationPath

65 | FilterExpr

66 | FilterExpr ’/’ RelativeLocationPath

67 | FilterExpr ’//’ RelativeLocationPath

68

69 FilterExpr ::= PrimaryExpr

70 | FilterExpr Predicate

71

72 OrExpr ::= AndExpr

73 | OrExpr ’or’ AndExpr

74

75 AndExpr ::= EqualityExpr

76 | AndExpr ’and’ EqualityExpr

77

78 EqualityExpr ::= RelationalExpr

79 | EqualityExpr ’=’ RelationalExpr

80 | EqualityExpr ’!=’ RelationalExpr

81

82 RelationalExpr ::= AdditiveExpr

Appendix A. XPath Backus-Naur form grammar 57

83 | RelationalExpr ’<’ AdditiveExpr

84 | RelationalExpr ’>’ AdditiveExpr

85 | RelationalExpr ’<=’ AdditiveExpr

86 | RelationalExpr ’>=’ AdditiveExpr

87

88 AdditiveExpr ::= MultiplicativeExpr

89 | AdditiveExpr ’+’ MultiplicativeExpr

90 | AdditiveExpr ’-’ MultiplicativeExpr

91

92 MultiplicativeExpr ::= UnaryExpr

93 | MultiplicativeExpr MultiplyOperator

94 UnaryExpr

95 | MultiplicativeExpr ’div’ UnaryExpr

96 | MultiplicativeExpr ’mod’ UnaryExpr

97

98 UnaryExpr ::= UnionExpr

99 | ’-’ UnaryExpr

100

101 ExprToken ::= ’(’ | ’)’ | ’[’ | ’]’ | ’.’ | ’..’ |

102 ’@’ | ’,’ | ’::’

103 | NameTest

104 | NodeType

105 | Operator

106 | FunctionName

107 | AxisName

108 | Literal

109 | Number

110 | VariableReference

111

112 Literal ::= ’"’ [^"]* ’"’

113 | "’" [^’]* "’"

114

115 Number ::= Digits (’.’ Digits?)?

Appendix A. XPath Backus-Naur form grammar 58

116 | ’.’ Digits

117

118 Digits ::= [0-9]+

119

120 Operator ::= OperatorName

121 | MultiplyOperator

122 | ’/’ | ’//’ | ’|’ | ’+’ | ’-’ | ’=’ |

123 ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’

124

125 OperatorName ::= ’and’ | ’or’ | ’mod’ | ’div’

126

127 MultiplyOperator ::= ’*’

128

129 FunctionName ::= QName - NodeType

130

131 VariableReference ::= ’$’ QName

132

133 NameTest ::= ’*’

134 | NCName ’:’ ’*’

135 | QName

136

137 NodeType ::= ’comment’

138 | ’text’

139 | ’processing-instruction’

140 | ’node’

141

142 ExprWhitespace ::= S

Appendix B

Implementation of the two primitives

firstchild and nextsibling

This appendix lists the Python code used to implement the two functions corresponding

to thefirstchild andnextsiblingprimitives. These primitives are used to define the six

supported XPath axes, and are discussed further in sections3.5on page23and4.4.2.1

on page34.

1 def firstChild(self, nodeName):

2 possibilities = []

3 if nodeName[1] == "/":

4 # If the node is the root then return a special node indicating the

5 # first (and only) child is the document root element.

6 return [[self.documentRoot.getName(), "*documentRoot"]]

7 if nodeName == "*documentRoot":

8 # Get the document root element’s FSM.

9 fsm = \

10 self.elementTable.getElement(self.documentRoot.getName()).getFSM()

11 else:

12 # Otherwise get the element in question’s FSM.

13 elementName = self.elementTable.getElement(nodeName)

14 if elementName:

15 fsm = elementName.getFSM()

59

Appendix B. Implementation of the two primitives firstchild and nextsibling 60

16 else:

17 fsm = None

18 if fsm != None:

19 # If there is a finite-state machine (i.e. the element has a

20 # complex type), then look through it for possible first children.

21 startNode = fsm.startNode

22 for edge in startNode.edges:

23 newItem = [edge.label[0].pair, edge.dest]

24 if newItem not in possibilities:

25 possibilities.append(newItem)

26 return possibilities

27

28 def nextSibling(self, fsmNode):

29 siblings = []

30 if fsmNode == "/":

31 # Root cannot have any siblings...

32 return []

33 if fsmNode == "*documentRoot":

34 # ...neither can the document root...

35 return []

36 if fsmNode == "attribute":

37 # ...or attribute nodes.

38 return []

39 if fsmNode != None:

40 if len(fsmNode.edges) > 0:

41 # For each edge leaving this FSM node...

42 for edge in fsmNode.edges:

43 if edge.dest != fsmNode:

44 # ...add a new sibling.

45 newItem = [edge.label[0].pair, edge.dest]

46 if newItem not in siblings:

47 siblings.append(newItem)

48 return siblings

Appendix C

The program from the command-line

This appendix serves to show some examples of the user input and program output as

it is used from the command-line.

C.1 Successful evaluation

User input

axe -e /t:doc/t:body/descendant::t:list[@type] -s htdtd.xsd

-r t:doc -n t=http://example.org/

Program output

Match found for the XPath expression in the schema.

C.2 Unsuccessful evaluation

User input

axe -e following-sibling::t:bdoy -s htdtd.xsd -r t:doc

-n t=http://example.org/

Program output

No match found for the XPath expression in the schema.

61

Appendix D

XML Schema used in testing

The schema below was used to carry out the tests detailed in section5.2. The schema

was converted from a DTD supplied by the project supervisor, Dr. Henry Thompson.

Note the addition of a definition for an element namedunreferenced. This element is

used in chapter5 to show up a bug in the program.

1 <?xml version=’1.0’?>

2 <schema xmlns:eg=’http://example.org/’

3 targetNamespace=’http://example.org/’

4 xmlns=’http://www.w3.org/2001/XMLSchema’>

5

6 <element name=’doc’>

7 <complexType>

8 <sequence>

9 <element ref=’eg:head’ minOccurs=’0’ maxOccurs=’1’/>

10 <element ref=’eg:body’/>

11 </sequence>

12 </complexType>

13 </element>

14

15 <element name=’head’>

16 <complexType>

62

Appendix D. XML Schema used in testing 63

17 <sequence>

18 <element ref=’eg:title’/>

19 <element ref=’eg:author’ maxOccurs=’unbounded’/>

20 <choice minOccurs=’0’ maxOccurs=’unbounded’>

21 <element ref=’eg:date’/>

22 <element ref=’eg:note’/>

23 </choice>

24 </sequence>

25 </complexType>

26 </element>

27

28 <element name=’title’>

29 <complexType mixed=’true’>

30 <choice minOccurs=’0’ maxOccurs=’unbounded’>

31 <element ref=’eg:emph’/>

32 <element ref=’eg:code’/>

33 <element ref=’eg:name’/>

34 <element ref=’eg:link’/>

35 </choice>

36 </complexType>

37 </element>

38

39 <element name=’author’>

40 <complexType mixed=’true’>

41 <choice minOccurs=’0’ maxOccurs=’unbounded’>

42 <element ref=’eg:emph’/>

43 <element ref=’eg:code’/>

44 <element ref=’eg:name’/>

45 <element ref=’eg:link’/>

46 </choice>

47 </complexType>

Appendix D. XML Schema used in testing 64

48 </element>

49

50 <element name=’date’>

51 <complexType mixed=’true’>

52 </complexType>

53 </element>

54

55 <element name=’body’>

56 <complexType>

57 <sequence>

58 <element ref=’eg:div’ maxOccurs=’unbounded’/>

59 </sequence>

60 </complexType>

61 </element>

62

63 <element name=’div’>

64 <complexType>

65 <sequence>

66 <element ref=’eg:title’/>

67 <choice maxOccurs=’unbounded’>

68 <element ref=’eg:div’/>

69 <element ref=’eg:p’/>

70 <element ref=’eg:list’/>

71 <element ref=’eg:display’/>

72 <element ref=’eg:note’/>

73 <element ref=’eg:image’/>

74 </choice>

75 </sequence>

76 </complexType>

77 </element>

78

Appendix D. XML Schema used in testing 65

79 <element name=’p’>

80 <complexType mixed=’true’>

81 <choice minOccurs=’0’ maxOccurs=’unbounded’>

82 <element ref=’eg:emph’/>

83 <element ref=’eg:code’/>

84 <element ref=’eg:name’/>

85 <element ref=’eg:link’/>

86 </choice>

87 </complexType>

88 </element>

89

90 <element name=’display’>

91 <complexType mixed=’true’>

92 <choice minOccurs=’0’ maxOccurs=’unbounded’>

93 <element ref=’eg:emph’/>

94 <element ref=’eg:code’/>

95 <element ref=’eg:name’/>

96 <element ref=’eg:link’/>

97 </choice>

98 </complexType>

99 </element>

100

101 <element name=’note’>

102 <complexType mixed=’true’>

103 <choice minOccurs=’0’ maxOccurs=’unbounded’>

104 <element ref=’eg:emph’/>

105 <element ref=’eg:code’/>

106 <element ref=’eg:name’/>

107 <element ref=’eg:link’/>

108 </choice>

109 </complexType>

Appendix D. XML Schema used in testing 66

110 </element>

111

112 <element name=’list’>

113 <complexType>

114 <choice maxOccurs=’unbounded’>

115 <element ref=’eg:note’/>

116 <element ref=’eg:item’/>

117 </choice>

118 <attribute name=’type’ use=’required’>

119 <simpleType>

120 <restriction base=’string’>

121 <enumeration value=’normal’/>

122 <enumeration value=’enum’/>

123 <enumeration value=’defn’/>

124 <enumeration value=’naked’/>

125 <enumeration value=’tdefn’/>

126 </restriction>

127 </simpleType>

128 </attribute>

129 <attribute name=’term-width’ type=’string’ use=’required’/>

130 <attribute name=’term-align’ use=’required’>

131 <simpleType>

132 <restriction base=’string’>

133 <enumeration value=’left’/>

134 <enumeration value=’center’/>

135 <enumeration value=’right’/>

136 <enumeration value=’justify’/>

137 <enumeration value=’char’/>

138 </restriction>

139 </simpleType>

140 </attribute>

Appendix D. XML Schema used in testing 67

141 </complexType>

142 </element>

143

144 <element name=’emph’>

145 <complexType mixed=’true’>

146 <attribute name=’color’ type=’string’ use=’optional’/>

147 </complexType>

148 </element>

149

150 <element name=’code’>

151 <complexType mixed=’true’>

152 <choice minOccurs=’0’ maxOccurs=’unbounded’>

153 <element ref=’eg:emph’/>

154 <element ref=’eg:code’/>

155 <element ref=’eg:name’/>

156 <element ref=’eg:link’/>

157 </choice>

158 </complexType>

159 </element>

160

161 <element name=’name’>

162 <complexType mixed=’true’>

163 </complexType>

164 </element>

165

166 <element name=’item’>

167 <complexType mixed=’true’>

168 <choice minOccurs=’0’ maxOccurs=’unbounded’>

169 <element ref=’eg:p’/>

170 <element ref=’eg:list’/>

171 <element ref=’eg:display’/>

Appendix D. XML Schema used in testing 68

172 <element ref=’eg:note’/>

173 <element ref=’eg:image’/>

174 <element ref=’eg:emph’/>

175 <element ref=’eg:code’/>

176 <element ref=’eg:name’/>

177 <element ref=’eg:link’/>

178 </choice>

179 <attribute name=’term’ type=’string’ use=’optional’/>

180 </complexType>

181 </element>

182

183 <element name=’link’>

184 <complexType mixed=’true’>

185 <choice minOccurs=’0’ maxOccurs=’unbounded’>

186 <element ref=’eg:emph’/>

187 <element ref=’eg:code’/>

188 <element ref=’eg:name’/>

189 <element ref=’eg:link’/>

190 </choice>

191 <attribute name=’href’ type=’string’ use=’optional’/>

192 <attribute name=’name’ type=’string’ use=’optional’/>

193 </complexType>

194 </element>

195

196 <element name=’image’>

197 <complexType mixed=’true’>

198 <attribute name=’source’ type=’string’ use=’required’/>

199 </complexType>

200 </element>

201

202 <element name=’unreferenced’>

Appendix D. XML Schema used in testing 69

203 <complexType>

204 <sequence>

205 <element ref=’eg:doc’ maxOccurs=’unbounded’/>

206 </sequence>

207 </complexType>

208 </element>

209

210 </schema>

Bibliography

[1] A. Aho and J. Ullman.Principles of Compiler Design. Addison-Wesley, Reading,

Mass., 1977.

[2] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective

dissemination of information.VLDB Journal, 9:53–64, 2000.

[3] M. Arenas, W. Fan, and L. Libkin. What’s hard about XML Schema constraints?

Lecture Notes in Computer Science, 2453:269–278, 2002.

[4] M. Benedikt, W. Fan, and G. M. Kuper. Structural properties of XPath fragments.

Lecture Notes in Computer Science, 2572:79–95, 2003.

[5] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes, 2001.http:

//www.w3.org/TR/xmlschema-2/.

[6] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: An XML Query Language, 2002.http://www.w3.org/TR/

xquery/.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup

Language (XML) 1.0 (Second Edition), 2000.http://www.w3.org/TR/2000/

REC-xml-20001006.

[8] D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathematical Markup Language

(MathML) Version 2.0, 2001.http://www.w3.org/TR/MathML2/.

[9] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient filtering of XML

documents with XPath expressions. In R. Agrawal, K. Dittrich, and A. H. H.

70

http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/MathML2/

Bibliography 71

Ngu, editors,Proc. of the 18th Int’l Conf. on Data Engineering, pages 235–244,

San Jose, Calif., 2002. IEEE Comput. Soc.

[10] J. Clark. XSL Transformations (XSLT), 1999.http://www.w3.org/TR/xslt.

[11] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0, 1999.http:

//www.w3.org/TR/1999/REC-xpath-19991116.

[12] The Unicode Consortium.The Unicode Standard. Addison-Wesley Developers

Press, Reading, Mass., 2000.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A

Query Language for XML, 2002.http://www.w3.org/TR/NOTE-xml-ql/.

[14] J. Earley. An efficient context-free parsing algorithm.Communications of the

ACM, 6(8):451–455, 1970.

[15] D. C. Fallside. XML Schema Part 0: Primer, 2001.http://www.w3.org/TR/

2001/REC-xmlschema-0-20010502/.

[16] J. Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification, 2001.http:

//www.w3.org/TR/SVG/.

[17] International Organization for Standardization. ISO 8879:1986(E). Information

processing – Text and office systems – Standard Generalized Markup Language

(SGML), 1986. Geneva, Switzerland.

[18] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath

queries. InProc. of the 28th Int’l Conf. on Very Large Databases, pages 95–106,

Hong Kong, China, 2002. Morgan Kaufmann Publishers.

[19] G. Gottlob, C. Koch, and R. Pichler. XPath processing in a nutshell.SIGMOD

Record, 32(1):12–19, 2003.

[20] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams

with deterministic automata.Lecture Notes in Computer Science, 2572:173–189,

2003.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/NOTE-xml-ql/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/

Bibliography 72

[21] S. Holzner.Inside XML. New Riders, Indianapolis, Ind, 2001.

[22] H. Hosoya and B. C. Pierce. XDuce: a typed XML processing language. InInt’l

Workshop on the Web and Databases, Dallas, Tex., 2000.

[23] D. Jurafsky and J. H. Martin.Speech and Language Processing. Prentice-Hall,

Upper Saddle River, NJ., 2000.

[24] S. C. Kleene. Representation of events in nerve nets and finite automata. In

C. Shannon and J. McCarthy, editors,Automata Studies, pages 3–41. Princeton

University Press, Princeton, NJ., 1956.

[25] M. Lutz and D. Ascher.Learning Python. O’Reilly & Associates, Sebastopol,

Calif., 1999.

[26] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, pages 115–133, 1943. Reprinted in

Neurocomputing: Foundations of Research, ed. by J. A. Anderson and E. Rosen-

feld, MIT Press 1988.

[27] F. Neven. Automata theory for XML researchers.SIGMOD Record, 31(3):39–46,

2002.

[28] M. O. Rabin and D. Scott. Finite automata and their decision problems.IBM

Journal of Research and Development, 3(2):114–125, 1959.

[29] H. S. Thompson. W3C XML Pointer, XML Base and XML Linking, 2003.http:

//www.w3.org/XML/Linking.

[30] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part

1: Structures, 2001.http://www.w3.org/TR/xmlschema-1/.

[31] H. S. Thompson and R. Tobin. Current status of XSV: Coverage, known bugs,

etc., 2003.http://www.ltg.ed.ac.uk/~ht/xsv-status.html.

[32] H. S. Thompson and R. Tobin. Using finite state automata to implement W3C

XML Schema content model validation and restriction checking. At the time of

http://www.w3.org/XML/Linking
http://www.w3.org/XML/Linking
http://www.w3.org/TR/xmlschema-1/
http://www.ltg.ed.ac.uk/~ht/xsv-status.html

Bibliography 73

writing this was unpublished. It was submitted for XML Europe 2003, and seen

in June, 2003.

[33] A. M. Turing. On computable numbers, with an application to the Entshei-

dungsproblem.Proc. of the London Mathematical Society, 42:230–265, 1936.

A correction was published in the following volume, pp. 544–546.

	1 Introduction
	1.1 XML and its companion recommendations
	1.2 Evaluating against document types
	1.3 Project overview

	2 Literature review
	3 Materials and methods
	3.1 Finite-state automata
	3.1.1 Non-determinism

	3.2 XML schemas and automata
	3.3 Parsing XPath expressions
	3.3.1 Abbreviated syntax of location paths

	3.4 Location paths as automata input sentences
	3.4.1 Left-to-right parsing
	3.4.2 Right-to-left parsing
	3.4.3 Advantages and disadvantages of left-to-right parsing
	3.4.4 A note on the Earley algorithm

	3.5 Navigating the document tree

	4 Implementation
	4.1 Collecting unknown data
	4.2 Obtaining the finite-state automata
	4.2.1 Using multiple automata
	4.2.2 Handling non-element nodes

	4.3 Handling XPath expressions
	4.4 Evaluation
	4.4.1 Finding the context node
	4.4.2 Location steps, axes, and primitives

	4.5 Removing the problem of recursion
	4.6 Simple types

	5 Analysis
	5.1 Command-line interface
	5.2 Testing the program
	5.2.1 Self axis
	5.2.2 Child axis
	5.2.3 Descendant axis
	5.2.4 Descendant-or-self axis
	5.2.5 Following-sibling axis
	5.2.6 Attributes and predicates

	5.3 Bugs in the implementation
	5.4 Future work
	5.4.1 A new technique

	6 Summary
	A XPath Backus-Naur form grammar
	B Implementation of the two primitives firstchild and nextsibling
	C The program from the command-line
	C.1 Successful evaluation
	C.2 Unsuccessful evaluation

	D XML Schema used in testing
	Bibliography

